Sheet #1

1 Find the vector \bar{A} directed from (2,-4,1) to (0,-2,0) in Cartesian coordinates and find the unit vector along \bar{A}

Answer
(2,-4,1) → (0,-2,0)
$\bar{A} = (0-2)\bar{a}_x + (-2 - (-4))\bar{a}_y + (0-1)\bar{a}_z$
$\overline{A} = -2\overline{a}_x + 2\overline{a}_y - \overline{a}_z$
$\bar{a}_A = \frac{\bar{A}}{ \bar{A} }$
$ \bar{A} = \sqrt{(-2)^2 + (2)^2 + (-1)^2} = \sqrt{4 + 4 + 1} = \sqrt{9} = 3$
$\bar{a}_A = \frac{-2\bar{a}_x + 2\bar{a}_y - \bar{a}_z}{3}$
$\overline{a}_A = \frac{-2}{3}\overline{a}_x + \frac{2}{3}\overline{a}_y - \frac{1}{3}\overline{a}_z$

2 Show that $\bar{A} = 4\bar{a}_x - 2\bar{a}_y - \bar{a}_z$ and $\bar{B} = \bar{a}_x + 4\bar{a}_y - 4\bar{a}_z$ are perpendicular

Answer

The vectors \bar{A} and \bar{B} are perpendicular when
$\bar{A} \cdot \bar{B} = 0$
$\bar{A} \cdot \bar{B} = \bar{A} \bar{B} \cos \theta_{AB} = 0$
$\cos\theta_{AB} = 0 \Rightarrow \theta_{AB} = 90^{\circ}$
$\bar{A} \cdot \bar{B} = \left(4\bar{a}_x - 2\bar{a}_y - \bar{a}_z\right) \cdot \left(\bar{a}_x + 4\bar{a}_y - 4\bar{a}_z\right)$
$\bar{A} \cdot \bar{B} = (4 \times 1) + (-2 \times 4) + (-1 \times -4)$
$\bar{A}\cdot\bar{B}=4-8+4=0$
$\because \overline{A} \cdot \overline{B} = 0$
$\div \overline{oldsymbol{A}} \perp \overline{oldsymbol{B}}$

3 Determine the smaller angle between

$$\bar{A} = 2\bar{a}_x + 4\bar{a}_y$$
 and $\bar{B} = 6\bar{a}_y - 4\bar{a}_z$

using the cross product and also the dot product

Answer

Using Dot Product	Using Cross Product
$\bar{A} \cdot \bar{B} = \bar{A} \bar{B} \cos \theta_{AB}$	$\bar{A} \times \bar{B} = \bar{A} \bar{B} \sin \theta_{AB} \bar{a}_n$
$\cos\theta_{AB} = \frac{\bar{A} \cdot \bar{B}}{ \bar{A} \bar{B} }$	$ \bar{A} \times \bar{B} = \bar{A} \bar{B} \sin\theta_{AB}$
$\bar{A} \cdot \bar{B} = (2\bar{a}_x + 4\bar{a}_y) \cdot (6\bar{a}_y - 4\bar{a}_z)$	$\sin \theta_{AB} = \frac{ \bar{A} \times \bar{B} }{ \bar{A} \bar{B} }$
$\bar{A} \cdot \bar{B} = 4 \ x \ 6 = 24$	$\bar{A} \times \bar{B} = \left(2\bar{a}_x + 4\bar{a}_y\right) \times \left(6\bar{a}_y - 4\bar{a}_z\right)$
$ \bar{A} = \sqrt{(2)^2 + (4)^2} = \sqrt{4 + 16}$	$\bar{A} \times \bar{B} = \begin{vmatrix} \bar{a}_x & \bar{a}_y & \bar{a}_z \\ 2 & 4 & 0 \end{vmatrix}$
$ \bar{A} = \sqrt{20}$	l 0 6 -4l
$ \bar{B} = \sqrt{(6)^2 + (-4)^2} = \sqrt{36 + 16}$	$\bar{A} \times \bar{B} = \bar{a}_x[-16] - \bar{a}_y[-8] + \bar{a}_z[12]$
$ \overline{B} = \sqrt{52}$	$\bar{A} \times \bar{B} = -16\bar{a}_x + 8\bar{a}_y + 12\bar{a}_z$
$\cos \theta_{AB} = \frac{24}{2} = 0.744208$	$ \bar{A} \times \bar{B} = \sqrt{(-16)^2 + (8)^2 + (12)^2}$
$\sqrt{20}\sqrt{52}$	$ \bar{A} \times \bar{B} = \sqrt{256 + 64 + 144}$
$\theta_{AB} = \cos^{-1} 0.744208$	$ \bar{A} \times \bar{B} = \sqrt{464}$
$oldsymbol{ heta}_{AB}=41.9088^\circ$	$ \bar{A} = \sqrt{20}$
	$ \overline{B} = \sqrt{52}$
	$\sin \theta_{AB} = \frac{\sqrt{464}}{\sqrt{20}\sqrt{52}} = 0.667947$
	$\theta_{AB} = \sin^{-1} 0.667947$
	$ heta_{AB} = 41.9088^{\circ}$ or 138.0911°

3

4 Given $\overline{F} = (y-1)\overline{a}_x + 2x\overline{a}_y$, find the vector at (2,2,1) and its projection on $\overline{B} = 5\overline{a}_y - \overline{a}_y + 2\overline{a}_z$

Answer

At point (2,2,1) , $\bar{F} = (2-1)\bar{a}_x + 2x2 \ \bar{a}_y$

$$\overline{F} = \overline{a}_x + 4\overline{a}_y$$

Projection of \overline{F} onto $\overline{B} = |\overline{F}| \cos \theta$

 $\bar{F} \cdot \bar{B} = |\bar{F}| |\bar{B}| \cos \theta$

Projection of \overline{F} onto $\overline{B} = \frac{\overline{F} \cdot \overline{B}}{|\overline{B}|} = \overline{F} \cdot \overline{a}_B$

Projection of
$$\overline{F}$$
 onto $\overline{B} = \frac{\overline{F} \cdot \overline{B}}{|\overline{B}|}$

 $\overline{F} \cdot \overline{B} = (\overline{a}_x + 4\overline{a}_y) \cdot (5\overline{a}_y - \overline{a}_y + 2\overline{a}_z) \qquad |\overline{B}| = \sqrt{(5)^2 + (-1)^2 + (2)^2} = \sqrt{30}$ $\overline{F} \cdot \overline{B} = (1x5) + (4x - 1) + (0x2) = 1$

Projection of
$$\overline{F}$$
 onto $\overline{B} = \frac{1}{\sqrt{30}}$

4

5 If $\overline{A} = \overline{a}_x + 2\overline{a}_y - 3\overline{a}_z$ and $\overline{B} = 2\overline{a}_x - \overline{a}_y + \overline{a}_z$

Determine :

- a) The magnitude of projection of \bar{B} on \bar{A}
- b) The smallest angle between \overline{A} and \overline{B}
- c) The vector projection \bar{A} onto \bar{B}
- d) A unit vector perpendicular to the plane containing \bar{A} and \bar{B}

Answer

$$\bar{A} \cdot \bar{B} = (\bar{a}_x + 2\bar{a}_y - 3\bar{a}_z) \cdot (2\bar{a}_x - \bar{a}_y + \bar{a}_z) = (1x2) + (2x - 1) + (-3x1)$$
$$\bar{A} \cdot \bar{B} = -3$$
$$|\bar{A}| = \sqrt{(1)^2 + (2)^2 + (-3)^2} = \sqrt{1 + 4 + 9}$$
$$|\bar{A}| = \sqrt{14}$$
$$|\bar{B}| = \sqrt{(2)^2 + (-1)^2 + (1)^2} = \sqrt{4 + 1 + 1}$$
$$|\bar{B}| = \sqrt{6}$$

a) The magnitude of projection of \bar{B} on \bar{A}

Projection of
$$\overline{B}$$
 on $\overline{A} = \frac{\overline{B} \cdot \overline{A}}{|\overline{A}|} = \frac{-3}{\sqrt{14}}$
Magnitude Projection of \overline{B} onto $\overline{A} = \frac{3}{\sqrt{14}}$

b) The smallest angle between \bar{A} and \bar{B}

$$\theta_{AB} = \cos^{-1} \frac{\bar{A} \cdot \bar{B}}{|\bar{A}||\bar{B}|} = \cos^{-1} \frac{-3}{\sqrt{14}\sqrt{6}}$$
$$\theta_{AB} = \mathbf{109.} \, \mathbf{1066^{\circ}}$$

c) The vector projection \bar{A} onto \bar{B}

Projection of
$$\overline{A}$$
 on $\overline{B} = \frac{\overline{A} \cdot \overline{B}}{|\overline{B}|} = \frac{-3}{\sqrt{6}}$

5

Vector Projection of \overline{A} onto $\overline{B} = \frac{\overline{A} \cdot \overline{B}}{|\overline{B}|} \overline{a}_B$

Vector Projection of
$$\overline{B}$$
 onto $\overline{A} = \left(\frac{-3}{\sqrt{6}}\right) \overline{a}_B$
Vector Projection of \overline{B} onto $\overline{A} = \left(\frac{-3}{\sqrt{6}}\right) \left(\frac{2\overline{a}_x - \overline{a}_y + \overline{a}_z}{\sqrt{6}}\right)$
Vector Projection of \overline{B} onto $\overline{A} = -\overline{a}_x + \mathbf{0}.5\overline{a}_y - \mathbf{0}.5\overline{a}_z$

d) A unit vector perpendicular to the plane containing \bar{A} and \bar{B}

There are two possible methods

$$\bar{A} \times \bar{B} = |\bar{A} \times \bar{B}| \bar{a}_n \qquad \bar{A} \times \bar{B} = |\bar{A}| |\bar{B}| \sin \theta_{AB} \bar{a}_n$$
$$\bar{a}_n = \frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|} \qquad \bar{a}_n = \frac{\bar{A} \times \bar{B}}{|\bar{A}| |\bar{B}| \sin \theta_{AB}}$$

Τ

$$\bar{A} \times \bar{B} = \begin{vmatrix} \bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 1 & 2 & -3 \\ 2 & -1 & 1 \end{vmatrix} |\bar{A} \times \bar{B}| = \sqrt{(-1)^{2} + (-7)^{2} + (-5)^{2}} \\ \bar{A} \times \bar{B} = \bar{a}_{x} [-1] - \bar{a}_{y} [7] + \bar{a}_{z} [-5] \\ \bar{A} \times \bar{B} = -\bar{a}_{x} - 7\bar{a}_{y} - 5\bar{a}_{z} \end{vmatrix} |\bar{A} \times \bar{B}| = \sqrt{75}$$

$$\bar{a}_{n} = \frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|} = \frac{-\bar{a}_{x} - 7\bar{a}_{y} - 5\bar{a}_{z}}{\sqrt{75}}$$

Generally

$$\overline{a}_n = \pm \frac{\overline{a}_x + 7\overline{a}_y + 5\overline{a}_z}{\sqrt{75}}$$

6

6 Given $\bar{A} = \bar{a}_x + \bar{a}_y$, $\bar{B} = \bar{a}_x + 2\bar{a}_z$, $\bar{C} = 2\bar{a}_y + \bar{a}_z$

Find $(\bar{A} \times \bar{B}) \times \bar{C}$ and compare it with $\bar{A} \times (\bar{B} \times \bar{C})$, comment on the result.

Answer		
$(\bar{A} \times \bar{B}) \times \bar{C}$	$\bar{A} \times (\bar{B} \times \bar{C})$	
$\bar{A} \times \bar{B} = \begin{vmatrix} \bar{a}_x & \bar{a}_y & \bar{a}_z \\ 1 & 1 & 0 \\ 1 & 0 & 2 \end{vmatrix}$	$\bar{B} \times \bar{C} = \begin{vmatrix} \bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 1 & 0 & 2 \\ 0 & 2 & 1 \end{vmatrix}$	
$\bar{A} \times \bar{B} = \bar{a}_x[2] - \bar{a}_y[2] + \bar{a}_z[-1]$	$\bar{B} \times \bar{C} = \bar{a}_x[-4] - \bar{a}_y[1] + \bar{a}_z[2]$	
$\bar{A} \times \bar{B} = 2\bar{a}_x - 2\bar{a}_y - \bar{a}_z$	$\bar{B} \times \bar{C} = -4\bar{a}_x - \bar{a}_y + 2\bar{a}_z$	
$(\bar{A} \times \bar{B}) \times \bar{C} = \begin{vmatrix} \bar{a}_x & \bar{a}_y & \bar{a}_z \\ 2 & -2 & -1 \\ 0 & 2 & 1 \end{vmatrix}$ $(\bar{A} \times \bar{B}) \times \bar{C} = \bar{a}_x[0] - \bar{a}_y[2] + \bar{a}_z[4]$	$\bar{A} \times (\bar{B} \times \bar{C}) = \begin{vmatrix} \bar{a}_x & \bar{a}_y & \bar{a}_z \\ 1 & 1 & 0 \\ -4 & -1 & 2 \end{vmatrix}$ $\bar{A} \times (\bar{B} \times \bar{C}) = \bar{a}_x[2] - \bar{a}_y[2] + \bar{a}_z[3]$	
$(\overline{A} \times \overline{B}) \times \overline{C} = -2\overline{a}_y + 4\overline{a}_z$	$\overline{A} \times (\overline{B} \times \overline{C}) = 2\overline{a}_x - 2\overline{a}_y + 3\overline{a}_z$	

It is clear that

$$(\bar{A} \times \bar{B}) \times \bar{C} \neq \bar{A} \times (\bar{B} \times \bar{C})$$

So, when we are calculating the cross product of three vectors $\overline{\overline{A} \times \overline{B} \times \overline{C}}$, brackets are needed to determine how to start calculating

7 Find $\overline{A} \cdot \overline{B} \times \overline{C}$ for \overline{A} , \overline{B} , \overline{C} of problem 6 and compare it with $\overline{A} \times \overline{B} \cdot \overline{C}$ comment on the result

Answer

$ar{A}\cdotar{B} imesar{C}$	$ar{A} imes ar{B} \cdot ar{C}$
$\bar{B} \times \bar{C} = -4\bar{a}_x - \bar{a}_y + 2\bar{a}_z$	$\bar{A} \times \bar{B} = 2\bar{a}_x - 2\bar{a}_y - \bar{a}_z$
$\bar{A} \cdot \bar{B} \times \bar{C} = (1x - 4) + (1x - 1) + (0x2)$	$\bar{A} \times \bar{B} \cdot \bar{C} = (2x0) + (-2x2) + (-1x1)$
$\overline{A} \cdot \overline{B} imes \overline{C} = -5$	$\overline{A} imes \overline{B} \cdot \overline{C} = -5$

It is clear that

$$\bar{A} \cdot \bar{B} \times \bar{C} = \bar{A} \times \bar{B} \cdot \bar{C}$$

This is because both values are the volume of parallelepiped whose sides are $\, ar{A} \,$, $ar{B} \,$ and $ar{C} \,$

8 Express the unit vector which is directed toward the origin from an arbitrary point on the plane z = -5

An arbitrary point on the plane z = -5, will have coordinates (x, y, -5)

$$\bar{R} = (0-x)\bar{a}_x + (0-y)\bar{a}_y + (0-(-5))\bar{a}_z$$
$$\bar{R} = -x\bar{a}_x - y\bar{a}_y + 5\bar{a}_z$$

$$|\bar{R}| = \sqrt{(-x)^2 + (-y)^2 + (5)^2}$$
$$|\bar{R}| = \sqrt{x^2 + y^2 + 25}$$

$$\overline{a}_R = \frac{\overline{R}}{|\overline{R}|}$$
$$\overline{a}_R = \frac{-x\overline{a}_x - y\overline{a}_y + 5\overline{a}_z}{\sqrt{x^2 + y^2 + 25}}$$

8

9 Given the two vectors $\bar{A} = -\bar{a}_x - 3\bar{a}_y - 4\bar{a}_z$, $\bar{B} = 2\bar{a}_x + 2\bar{a}_y + 2\bar{a}_z$ and a point C(1,3,4), Find

(a) \overline{R}_{AB} (b) $|\overline{A}|$ (c) \overline{a}_{A} (d) \overline{a}_{AB} (e) a unit vector directed from C toward A

Answer

REPORT

10 A triangle is defined by three points A(2, -5, 1)B(-3, 2, 4)C(0, 3, 1) Find

- a) $\bar{R}_{BC} imes \bar{R}_{BA}$
- b) The area of the triangle
- c) A unit vector perpendicular to the plane of the triangle

Answer

REPORT