Sheet \#1

1 Find the vector \bar{A} directed from $(2,-4,1)$ to $(0,-2,0)$ in Cartesian coordinates and find the unit vector along \bar{A}

Answer

$$
\begin{gathered}
(2,-4,1) \longrightarrow(0,-2,0) \\
\bar{A}=(0-2) \bar{a}_{x}+(-2-(-4)) \bar{a}_{y}+(0-1) \bar{a}_{z} \\
\overline{\boldsymbol{A}}=-\mathbf{2} \overline{\boldsymbol{a}}_{\boldsymbol{x}}+\mathbf{2} \overline{\boldsymbol{a}}_{\boldsymbol{y}}-\overline{\boldsymbol{a}}_{\boldsymbol{z}}
\end{gathered}
$$

$$
\begin{gathered}
\bar{a}_{A}=\frac{\bar{A}}{|\bar{A}|} \\
|\bar{A}|=\sqrt{(-2)^{2}+(2)^{2}+(-1)^{2}}=\sqrt{4+4+1}=\sqrt{9}=3 \\
\bar{a}_{A}=\frac{-2 \bar{a}_{x}+2 \bar{a}_{y}-\bar{a}_{z}}{3} \\
\overline{\boldsymbol{a}}_{\boldsymbol{A}}=\frac{-\mathbf{2}}{\mathbf{3}} \overline{\boldsymbol{a}}_{\boldsymbol{x}}+\frac{\mathbf{2}}{\mathbf{3}} \overline{\boldsymbol{a}}_{\boldsymbol{y}}-\frac{\mathbf{1}}{\mathbf{3}} \overline{\boldsymbol{a}}_{z}
\end{gathered}
$$

2 Show that $\bar{A}=4 \bar{a}_{x}-2 \bar{a}_{y}-\bar{a}_{z}$ and $\bar{B}=\bar{a}_{x}+4 \bar{a}_{y}-4 \bar{a}_{z}$ are perpendicular

Answer

The vectors \bar{A} and \bar{B} are perpendicular when

$$
\begin{gathered}
\bar{A} \cdot \bar{B}=0 \\
\bar{A} \cdot \bar{B}=|\bar{A}||\bar{B}| \cos \theta_{A B}=0 \\
\cos \theta_{A B}=0 \Rightarrow \theta_{A B}=90^{\circ} \\
\bar{A} \cdot \bar{B}=\left(4 \bar{a}_{x}-2 \bar{a}_{y}-\bar{a}_{z}\right) \cdot\left(\bar{a}_{x}+4 \bar{a}_{y}-4 \bar{a}_{z}\right) \\
\bar{A} \cdot \bar{B}=(4 \times 1)+(-2 \times 4)+(-1 \times-4) \\
\bar{A} \cdot \bar{B}=4-8+4=0 \\
\because \overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}=\mathbf{0} \\
\therefore \overline{\boldsymbol{A}} \perp \overline{\boldsymbol{B}}
\end{gathered}
$$

3 Determine the smaller angle between

$$
\bar{A}=2 \bar{a}_{x}+4 \bar{a}_{y} \quad \text { and } \quad \bar{B}=6 \bar{a}_{y}-4 \bar{a}_{z}
$$

using the cross product and also the dot product
Answer

Using Dot Product	Using Cross Product
$\begin{gathered} \bar{A} \cdot \bar{B}=\|\bar{A}\|\|\bar{B}\| \cos \theta_{A B} \\ \cos \theta_{A B}=\frac{\bar{A} \cdot \bar{B}}{\|\bar{A}\|\|\bar{B}\|} \\ \bar{A} \cdot \bar{B}=\left(2 \bar{a}_{x}+4 \bar{a}_{y}\right) \cdot\left(6 \bar{a}_{y}-4 \bar{a}_{z}\right) \\ \bar{A} \cdot \bar{B}=4 \times 6=24 \\ \|\bar{A}\|=\sqrt{(2)^{2}+(4)^{2}}=\sqrt{4+16} \\ \|\bar{A}\|=\sqrt{20} \\ \|\bar{B}\|=\sqrt{(6)^{2}+(-4)^{2}}=\sqrt{36+16} \\ \|\bar{B}\|=\sqrt{52} \\ \cos \theta_{A B}=\frac{24}{\sqrt{20} \sqrt{52}}=0.744208 \\ \theta_{A B}=\cos ^{-1} 0.744208 \\ \boldsymbol{\theta}_{A B}=41.9088^{\circ} \end{gathered}$	$\begin{gathered} \bar{A} \times \bar{B}=\|\bar{A}\|\|\bar{B}\| \sin \theta_{A B} \bar{a}_{n} \\ \|\bar{A} \times \bar{B}\|=\|\bar{A}\|\|\bar{B}\| \sin \theta_{A B} \\ \sin \theta_{A B}=\frac{\|\bar{A} \times \bar{B}\|}{\|\bar{A}\|\|\bar{B}\|} \\ \bar{A} \times \bar{B}=\left(2 \bar{a}_{x}+4 \bar{a}_{y}\right) \times\left(6 \bar{a}_{y}-4 \bar{a}_{z}\right) \\ \bar{A} \times \bar{B}=\left\|\begin{array}{ccc} \bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 2 & 4 & 0 \\ 0 & 6 & -4 \end{array}\right\| \\ \bar{A} \times \bar{B}=\bar{a}_{x}[-16]-\bar{a}_{y}[-8]+\bar{a}_{z}[12] \\ \bar{A} \times \bar{B}=-16 \bar{a}_{x}+8 \bar{a}_{y}+12 \bar{a}_{z} \\ \|\bar{A} \times \bar{B}\|=\sqrt{(-16)^{2}+(8)^{2}+(12)^{2}} \\ \|\bar{A} \times \bar{B}\|=\sqrt{256+64+144} \\ \|\bar{A} \times \bar{B}\|=\sqrt{464} \\ \|\bar{A}\|=\sqrt{20} \\ \boldsymbol{\theta}_{A B}=\mathbf{4 1 . 9 0 8 8} \quad \text { or } \\ \operatorname{liB8.0911} \mid=\sqrt{52} \end{gathered}$

4 Given $\bar{F}=(y-1) \bar{a}_{x}+2 x \bar{a}_{y}$, find the vector at $(2,2,1)$ and its projection on $\bar{B}=5 \bar{a}_{y}-\bar{a}_{y}+2 \bar{a}_{z}$

Answer

$$
\begin{aligned}
& \text { At point }(2,2,1), \bar{F}=(2-1) \bar{a}_{x}+2 \times 2 \bar{a}_{y} \\
& \qquad \overline{\boldsymbol{F}}=\overline{\boldsymbol{a}}_{\boldsymbol{x}}+\mathbf{4} \overline{\boldsymbol{a}}_{\boldsymbol{y}}
\end{aligned}
$$

Projection of \bar{F} onto $\bar{B}=|\bar{F}| \cos \theta$
$\bar{F} \cdot \bar{B}=|\bar{F}||\bar{B}| \cos \theta$
Projection of \bar{F} onto $\bar{B}=\frac{\bar{F} \cdot \bar{B}}{|\bar{B}|}=\bar{F} \cdot \bar{a}_{B}$

$$
\text { Projection of } \bar{F} \text { onto } \bar{B}=\frac{\bar{F} \cdot \bar{B}}{|\bar{B}|}
$$

$$
\begin{array}{rl|l}
\bar{F} \cdot \bar{B} & =\left(\bar{a}_{x}+4 \bar{a}_{y}\right) \cdot\left(5 \bar{a}_{y}-\bar{a}_{y}+2 \bar{a}_{z}\right) & |\bar{B}|=\sqrt{(5)^{2}+(-1)^{2}+(2)^{2}}=\sqrt{30} \\
\bar{F} \cdot \bar{B} & =(1 \times 5)+(4 \mathrm{x}-1)+(0 \mathrm{x} 2)=1 &
\end{array}
$$

$$
\text { Projection of } \bar{F} \text { onto } \bar{B}=\frac{1}{\sqrt{\mathbf{3 0}}}
$$

5 If $\bar{A}=\bar{a}_{x}+2 \bar{a}_{y}-3 \bar{a}_{z} \quad$ and $\quad \bar{B}=2 \bar{a}_{x}-\bar{a}_{y}+\bar{a}_{z}$
Determine :
a) The magnitude of projection of \bar{B} on \bar{A}
b) The smallest angle between \bar{A} and \bar{B}
c) The vector projection \bar{A} onto \bar{B}
d) A unit vector perpendicular to the plane containing \bar{A} and \bar{B}

Answer

$\bar{A} \cdot \bar{B}=\left(\bar{a}_{x}+2 \bar{a}_{y}-3 \bar{a}_{z}\right) \cdot\left(2 \bar{a}_{x}-\bar{a}_{y}+\bar{a}_{z}\right)=(1 \mathrm{x} 2)+(2 \mathrm{x}-1)+(-3 \mathrm{x} 1)$

$$
\begin{gathered}
\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}}=-\mathbf{3} \\
|\bar{A}|=\sqrt{(1)^{2}+(2)^{2}+(-3)^{2}}=\sqrt{1+4+9} \\
|\overline{\boldsymbol{A}}|=\sqrt{\mathbf{1 4}} \\
|\bar{B}|=\sqrt{(2)^{2}+(-1)^{2}+(1)^{2}}=\sqrt{4+1+1} \\
|\overline{\boldsymbol{B}}|=\sqrt{\mathbf{6}}
\end{gathered}
$$

a) The magnitude of projection of \bar{B} on \bar{A}

$$
\text { Projection of } \bar{B} \text { on } \bar{A}=\frac{\bar{B} \cdot \bar{A}}{|\bar{A}|}=\frac{-3}{\sqrt{14}}
$$

$$
\text { Magnitude Projection of } \bar{B} \text { onto } \bar{A}=\frac{3}{\sqrt{\mathbf{1 4}}}
$$

b) The smallest angle between \bar{A} and \bar{B}

$$
\begin{gathered}
\theta_{A B}=\cos ^{-1} \frac{\bar{A} \cdot \bar{B}}{|\bar{A}||\bar{B}|}=\cos ^{-1} \frac{-3}{\sqrt{14} \sqrt{6}} \\
\boldsymbol{\theta}_{A B}=\mathbf{1 0 9 . 1 0 6 6}
\end{gathered}
$$

c) The vector projection \bar{A} onto \bar{B}

$$
\text { Projection of } \bar{A} \text { on } \bar{B}=\frac{\bar{A} \cdot \bar{B}}{|\bar{B}|}=\frac{-3}{\sqrt{6}}
$$

Vector Projection of \bar{A} onto $\bar{B}=\frac{\bar{A} \cdot \bar{B}}{|\bar{B}|} \bar{a}_{B}$

$$
\text { Vector Projection of } \bar{B} \text { onto } \bar{A}=\left(\frac{-3}{\sqrt{6}}\right) \bar{a}_{B}
$$

Vector Projection of \bar{B} onto $\bar{A}=\left(\frac{-3}{\sqrt{6}}\right)\left(\frac{2 \bar{a}_{x}-\bar{a}_{y}+\bar{a}_{z}}{\sqrt{6}}\right)$

$$
\text { Vector Projection of } \bar{B} \text { onto } \bar{A}=-\bar{a}_{x}+\mathbf{0 . 5} \bar{a}_{y}-\mathbf{0 . 5} \bar{a}_{z}
$$

d) A unit vector perpendicular to the plane containing \bar{A} and \bar{B}

There are two possible methods

$$
\begin{array}{c|c}
\bar{A} \times \bar{B}=|\bar{A} \times \bar{B}| \bar{a}_{n} & \bar{A} \times \bar{B}=|\bar{A}||\bar{B}| \sin \theta_{A B} \bar{a}_{n} \\
\bar{a}_{n}=\frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|} & \bar{a}_{n}=\frac{\bar{A} \times \bar{B}}{|\bar{A}||\bar{B}| \sin \theta_{A B}}
\end{array}
$$

$$
\begin{array}{c|c}
\bar{A} \times \bar{B}=\left|\begin{array}{ccc}
\bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\
1 & 2 & -3 \\
2 & -1 & 1
\end{array}\right| & |\bar{A} \times \bar{B}|=\sqrt{(-1)^{2}+(-7)^{2}+(-5)^{2}} \\
\bar{B}=\bar{a}_{x}[-1]-\bar{a}_{y}[7]+\bar{a}_{z}[-5] & |\bar{A} \times \bar{B}|=\sqrt{1+49+25} \\
\bar{A} \times \bar{B}=-\bar{a}_{x}-7 \bar{a}_{y}-5 \bar{a}_{z} & |\bar{A} \times \bar{B}|=\sqrt{75}
\end{array}
$$

$$
\bar{a}_{n}=\frac{\bar{A} \times \bar{B}}{|\bar{A} \times \bar{B}|}=\frac{-\bar{a}_{x}-7 \bar{a}_{y}-5 \bar{a}_{z}}{\sqrt{75}}
$$

Generally

$$
\bar{a}_{n}= \pm \frac{\bar{a}_{x}+7 \bar{a}_{y}+5 \bar{a}_{z}}{\sqrt{75}}
$$

6 Given $\bar{A}=\bar{a}_{x}+\bar{a}_{y} \quad, \quad \bar{B}=\bar{a}_{x}+2 \bar{a}_{z} \quad, \quad \bar{C}=2 \bar{a}_{y}+\bar{a}_{z}$
Find $(\bar{A} \times \bar{B}) \times \bar{C}$ and compare it with $\bar{A} \times(\bar{B} \times \bar{C})$, comment on the result.

Answer

$(\bar{A} \times \bar{B}) \times \bar{C}$	$\bar{A} \times(\bar{B} \times \bar{C})$
$\bar{A} \times \bar{B}=\left\|\begin{array}{ccc}\bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 1 & 1 & 0 \\ 1 & 0 & 2\end{array}\right\|$	$\bar{B} \times \bar{C}=\left\|\begin{array}{ccc}\bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 1 & 0 & 2 \\ 0 & 2 & 1\end{array}\right\|$
$\bar{A} \times \bar{B}=\bar{a}_{x}[2]-\bar{a}_{y}[2]+\bar{a}_{z}[-1]$	$\bar{B} \times \bar{C}=\bar{a}_{x}[-4]-\bar{a}_{y}[1]+\bar{a}_{z}[2]$
$\bar{A} \times \bar{B}=2 \bar{a}_{x}-2 \bar{a}_{y}-\bar{a}_{z}$	$\bar{B} \times \bar{C}=-4 \bar{a}_{x}-\bar{a}_{y}+2 \bar{a}_{z}$
$(\bar{A} \times \bar{B}) \times \bar{C}=\left\|\begin{array}{ccc}\bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 2 & -2 & -1 \\ 0 & 2 & 1\end{array}\right\|$	$\bar{A} \times(\bar{B} \times \bar{C})=\left\|\begin{array}{ccc}\bar{a}_{x} & \bar{a}_{y} & \bar{a}_{z} \\ 1 & 1 & 0 \\ -4 & -1 & 2\end{array}\right\|$
$(\bar{A} \times \bar{B}) \times \bar{C}=\bar{a}_{x}[0]-\bar{a}_{y}[2]+\bar{a}_{z}[4]$	$\bar{A} \times(\bar{B} \times \bar{C})=\bar{a}_{x}[2]-\bar{a}_{y}[2]+\bar{a}_{z}[3]$
$(\overline{\boldsymbol{A}} \times \overline{\boldsymbol{B}}) \times \overline{\boldsymbol{C}}=-\mathbf{2} \overline{\boldsymbol{a}}_{\boldsymbol{y}}+\mathbf{4} \overline{\boldsymbol{a}}_{z}$	$\overline{\overline{\boldsymbol{A}} \times(\overline{\boldsymbol{B}} \times \overline{\boldsymbol{C}})=\mathbf{2} \overline{\boldsymbol{a}}_{\boldsymbol{x}}-\mathbf{2} \overline{\boldsymbol{a}}_{y}+\mathbf{3} \overline{\boldsymbol{a}}_{z}}$

It is clear that

$$
(\bar{A} \times \bar{B}) \times \bar{C} \neq \bar{A} \times(\bar{B} \times \bar{C})
$$

So, when we are calculating the cross product of three vectors $\overline{\bar{A} \times \bar{B} \times \bar{C}}$, brackets are needed to determine how to start calculating

7 Find $\bar{A} \cdot \bar{B} \times \bar{C}$ for $\bar{A}, \bar{B}, \bar{C}$ of problem 6 and compare it with $\bar{A} \times \bar{B} \cdot \bar{C}$ comment on the result

Answer

$\bar{A} \cdot \bar{B} \times \bar{C}$	$\bar{A} \times \bar{B} \cdot \bar{C}$
$\bar{B} \times \bar{C}=-4 \bar{a}_{x}-\bar{a}_{y}+2 \bar{a}_{z}$	$\bar{A} \times \bar{B}=2 \bar{a}_{x}-2 \bar{a}_{y}-\bar{a}_{z}$
$\bar{A} \cdot \bar{B} \times \bar{C}=(1 \mathrm{x}-4)+(1 \mathrm{x}-1)+(0 \mathrm{x} 2)$	$\bar{A} \times \bar{B} \cdot \bar{C}=(2 \mathrm{x} 0)+(-2 \mathrm{x} 2)+(-1 \mathrm{x} 1)$
$\overline{\boldsymbol{A}} \cdot \overline{\boldsymbol{B}} \times \overline{\boldsymbol{C}}=-\mathbf{5}$	$\overline{\boldsymbol{A}} \times \overline{\boldsymbol{B}} \cdot \overline{\boldsymbol{C}}=-\mathbf{5}$

It is clear that

$$
\bar{A} \cdot \bar{B} \times \bar{C}=\bar{A} \times \bar{B} \cdot \bar{C}
$$

This is because both values are the volume of parallelepiped whose sides are \bar{A}, \bar{B} and \bar{C}

8 Express the unit vector which is directed toward the origin from an arbitrary point on the plane $z=-5$

An arbitrary point on the plane $z=-5$, will have coordinates $(x, y,-5)$

$$
\begin{gathered}
\bar{R}=(0-x) \bar{a}_{x}+(0-y) \bar{a}_{y}+(0-(-5)) \bar{a}_{z} \\
\bar{R}=-x \bar{a}_{x}-y \bar{a}_{y}+5 \bar{a}_{z}
\end{gathered}
$$

$$
|\bar{R}|=\sqrt{(-x)^{2}+(-y)^{2}+(5)^{2}}
$$

$$
|\bar{R}|=\sqrt{x^{2}+y^{2}+25}
$$

$$
\begin{gathered}
\bar{a}_{R}=\frac{\bar{R}}{|\bar{R}|} \\
\overline{\boldsymbol{a}}_{\boldsymbol{R}}=\frac{-x \overline{\boldsymbol{a}}_{\boldsymbol{x}}-y \overline{\boldsymbol{a}}_{\boldsymbol{y}}+5 \overline{\boldsymbol{a}}_{z}}{\sqrt{\boldsymbol{x}^{2}+\boldsymbol{y}^{2}+\mathbf{2 5}}}
\end{gathered}
$$

9 Given the two vectors $\bar{A}=-\bar{a}_{x}-3 \bar{a}_{y}-4 \bar{a}_{z} \quad, \quad \bar{B}=2 \bar{a}_{x}+2 \bar{a}_{y}+2 \bar{a}_{z} \quad$ and a point $C(1,3,4)$, Find
(a) $\bar{R}_{A B}$
(b) $|\bar{A}|$
(c) \bar{a}_{A}
(d) $\bar{a}_{A B}$
(e) a unit vector directed from C toward A

Answer

10 A triangle is defined by three points $A(2,-5,1) B(-3,2,4) C(0,3,1)$ Find
a) $\bar{R}_{B C} \times \bar{R}_{B A}$
b) The area of the triangle
c) A unit vector perpendicular to the plane of the triangle

Answer

